
Variational bounds for lattice fermion models. I. Spinless fermions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 2727

(http://iopscience.iop.org/0305-4470/26/12/014)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys. A: Math. Gen. 26 (1993) 2727-2741. Printed in the UK 

Variational bounds for lattice fermion models: I. Spinless 
fermions 

R J Bursill and C J Thompson 
Mathematics Department, Univeniry of Melboume, Parkville, Victoria 3052, Aushalia 

Received 22 December 1992 in final form 10 February 1993 

Abstract In this paper we asses the validity of mean-field theories for lattice fermion systems 
with attractive interactions by comparing variational upper bounds from two plausible mean- 
field approximationca Van der Waals (independent panicle) approximation and a pairing 
approximation of the BCS type-for the Helmholtz free energy of a spinless fermion model 
with adractive nearest-neighbour interactions. It is found that there is a crossover from the Van 
der Waals approximation giving the best bound to the pairing approximation piving the best 
bound as t, the hopping integral passes through a critical value &. This Crossover phenomenon 
exists in all dimensions as well as for the limiting d + m model. We conclude that there can 
be no simple mean-field theorj which is valid for fermion systems with attractive interactions. 

1. Introduction 

Fermion models with attractive interactions have been ,the subject of recent investigations of 
bipolaron systems [1-12] and high temperature superconductivity [13-161. The RPA, pairing 
theories and other variational methods have been used to study such models but very little 
is known rigorously about the validity of the approximate theories. An exception is the 
BCS pairing theory which is known to hold rigorously [17] for the BCS reduced Hamiltonian 
under fairly general conditions on the attractive pair potential. 

A model which has received considerable attention in recent times is the Hubbard model 
[IS] which in its extended form has Hamiltonian 

where cl, (cia) i s  the creation (annhilation) operator for particles with hopping energy Ek, 

wavevector k and spin U =t or 4, ni, is the (occupation) number operator for particles 
with spin U and position vector j and UT' is the coupling strength between particles with 
spin U and Q' located on lattice sites i and j respectively. 

On a hypercubic d-dimensional lattice of volume V = Ld it is customary to allow only 
hopping between nearest-neighbour sites so that EX,, has the form 

€ k a  = -2ta€(2rrki/L,...,2irkd/L) (1.2) 

with spin-dependent hopping integrals to and 

E (el,. . . , ed) = d-"2[COS8~ + ... +coS@d] (1.3) 
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with the d-'lZ factor included to ensure the existence of'a non-trivial density of states in 
the limit d --f 00 [19]. 

In the interaction term of (1.1), Ur' non-negative corresponds to attraction and for the 
usual Hubbard model U$d is negative when i = j and U, U' are opposite spins and vanishes 
otherwise; that is the only interaction is on-site repulsion between particles of opposite spin. 
In reality, one would expect to have a mixture of short-range repulsion and longer-range 
attraction. In the present work, however, we will consider only purely attractive interactions 
so that Pauli exclusion provides the only effective repulsion between the particles. 

Apart from some exact results in one dimension [20] very little is known rigorously about 
the Hubbard model. It is not even clear, for example, what might constitute a legitimate 
mean-field theory for the model although some progress has been made in this direction 
by Vollhardt [21] and others [22] who have obtained some limited rigorous results in high 
spatial dimension, where it is known that lattice spin models approach their well known 
mean-field theories [23]. 

Using the BCS model results [17] as a guide it might be tempting to conjecture that a 
pairing ansatz would yield an appropriate mean-field theory for models of the form (1.1) with 
attractive interactions. It will be noted, however, that in the case of zero hopping ( 6 ~ ~  = 0) 
the model reduces to a classical two-component lattice gas. In this case we would expect 
a classical mean-field theory of the Van der Waals type to be more appropriate than a 
quantum mechanical pairing theory of BCS-type with perhaps some crossover between the 
two theories as the hopping is increased relative to the strength of the particle interactions. 

Our purpose in this series of articles is to study the question of appropriate mean-field 
theories for lattice fermion models by obtaining variational bounds for the Helmholtz free 
energy for models of the form (1.1) using various independent and pairing forms for a trial 
density matrix. 

In the present paper we consider a simple form of (1.1) where only one spin species 
of fermions is relevant and where hopping and attractive interactions take place on nearest- 
neighbour sites of a regular lattice. Our Hamiltonian is, therefore, taken to be 

k Vi) 
where ex is given by (1.2) with fw = f independent of spin and units are scaled to 
give an attraction between particles of strength d-' which guarantees the existence of 
thermodynamic quantities in the limit d -+ m. 

Using Van der Waals, or independent particle and pairing forms for the trial density 
matrix we, in fact, find a crossover phenomenon of the type already mentioned. That is, 
there is a critical value & of the hopping integral f such that a Van der Waals theory gives 
a lower (higher) free energy compared with a BCS-type pairing theory for t c r, (f > rc). 
Moreover, this crossover phenomenon holds for all dimensions d and also for the limiting 
d --f 00 model. 

This result suggests that there can be no simple mean-field theory for lattice fermion 
models which is valid for arbitrary combinations of hopping integrals and interaction 
strengths. This suggestion will be explored further in subsequent publications where we 
will consider the effects of spin dependence. 

I 

2. The variational principle 

For a quantum mechanical system with Hamiltonian X, the grand canonical partition 
function is given by 
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Q = Tr e-@(x-PAt 
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(2.1) 

where ,9 = l / k T ,  with k Boltzmann's constant and T the absolute temperature, !J is the 
chemical potential and N is the number operator. 

The thermodynamic potential is defined by 

where the equation 

n =  lim (N) /V  
v-m (2.3) 

provides a relationship between the (average) particle density n and the chemical potential 
where ( ) denotes the thermodynamic average defined by 

(A) = &-' TrAe-b('I-'uV). (2.4) 

With !J and x considered as functions of n and T the .. Helmholtz free energy is given by 

@ = !J - X I n P . ~  (25) 

A variational upper bound can generally be obtained by writing 'H in the form 

'H = U0 + 'H, (2.6) 

with KO, the,reference Hamiltonian, chosen so that the reference grand canonical partition 
function 

go = c re+(%-& (2.7) 

can be calculated easily but is alsa representative of the basic physics of the system. 

and the corresponding reference free energy 
With Q replaced by QO in (2.1) one obtains the reference thermodynamic potential xo 

where in the equation (2.3) for n, the thermodynamic average is taken with respect to the 
reference system, i.e. Q and 'H in (2.4) replaced respectively by Qo and 'Ho. 

A well known variational principle 1241 then states that 

where denotes the average of 'HI with respect to the reference system. 
In the following sections of this paper we will compute the variational upper bound' on 

the right-hand side of (2.9) for the model Hamiltonian (1.4) using two particular choices 
for the reference Hamiltonian %. 
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3. Independent particle bound 

The most obvious choice for F f o  in the variational principle (2.91 is the kinetic energy part 
of X, i.e. for the spinless fermion model (1.4). 
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In this case we refer to the right-hand side of (2.9) as the trivial mean-field bound and 
denote it by $@. An elementary calculation yields 

(3.2) 

with the comparison density equation (2.3) for the reference system given by 

n = l - f ,  (3.3) 

where 

(3.4) 

(3.5) 

(3.6) 

and 

'DO =de l . .  .dod. (3.7) 

The hivial bound (3.2) can, in principle, be improved by noting that the exact free 
energy +, considered as a function of the specific volume U = 1 f n, must be C', monotonic 
decreasing and concave [25].  It is clear that $@ is C1 but it need not be monotonic decreasing 
or concave. In any event we have 

!h < GI$@J = $vw (3.8) 

where G denotes the concave envelope, i.e. as a function of U, the greatest C' monotone 
decreasing concave function which is bounded above by $=. 

We denote the concave envelope of &, by $vw to highlight the similarity with 
conventional Van der Waals (mean-field) theory. In fact, as we will see later, qW is 
identical to the lattice gas version of Van der Waals theory [251 when t = 0. The independent 
particle bound with a concave envelope construction is also equivalent to the Husimi theory 
[261. 

In the sequel we will say that $* is stable if it is monotonic decreasing and concave in 
U. In such cases we will say that +.VW is tri'viul because 

$VW = for all U. (3.9) 
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Otherwise @.VW is non-trivial for some values of U where h v  < &. 

with respect to U in  appendiw A. It is useful to define a function 
To determine the values o f t  and T for which is stable we calculate its derivatives 

x ~ [ L " x J ;  ( ~ ) c o s e c h ~ d x ] - ' } .  Y 

We show that is stable for all temperatures if 

f > Fd(m) 

(3.10) 

(3.11) 

If 0 < t < Fd(co) then there exists a critical temperature Tc defined by 

t = Fd (2tlkTc) (3.13) 

is not stable, having two points of inflection. 
In such cases Jrw is obtained from a double tangent construction as shown in figure 1. 

above which qu is stable. For 0 < T < Tc, 

*U for U < U, I $& for u >'ug 

(U - V I )  for V I  < u ~ c  ug (3.14) 1c.s - *I 
?)w=~ @I+- 

ug - U] 

where 11.1 = @=(VI) and l/ls = &(us) with V I  and'ug interpreted as the liquid and gas specific 
volumes respectively. The region UI < U < us in which h v  is non-trivial is interpreted as 
the coexistence region and writing ng = U;' and nl = U;', we have 

nl= 1 -ng (3.15) 

and 

t = G(ng) 
where 

(3.16) 

(3.17) 

The order parameter 2 - UI is maximal at T = 0 and vanishes as T + T;. 
Finally we note from (3.2) and (3.3) that when there is no hopping term (t = 0) 

p$u = logn + n-'(I.- n )  log(1- n) - pn. (3.18) 
In &is case kT, = 1/2 and (3.16) reduces to the familiar mean-field equation 

ng - 4 = 4 tanh p (ng - 4) . (3.19) 

The ground-state energy estimate in this case is easily calculated to he 

h = - 1  for all U at T .= 0. (3.20) 
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ul - 
Specific Volume, li - 

\ 
Figure 1. Double tangent construction for the trivial mean-field free energy, &. 

4. A pairing bound 

To develop a pairing bound (2.9) for the free energy we begin by writing the interaction 
term in (1.4) in terms of momentum space creation and annihilation operators i.e. 

V = -d-' x n i n j  (4.1) 

(4.2) 

(U)  
= -v-' y-kckc[c,ck-l+, -t t 

klm 

where 
d 

vk  = d-' exp (k ik j /L)  . (4.3) 
j=l 

We then write. 

v = V" + v p  + v c  

where 

(4.4) 

(4.5) 

v, = v  -v, - vp (4.7) 
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where nk = c l c k  is the number operator for particles with wavevector k, bk = C - ~ C ~  is the 
annihilation operator for a d-wave (spinless) pair with momentum 2nk/L, the primed sum 
is over vectors k with 0 < kl < L/2 and 

3 2zki  , 2nlj 
&[ = - dV j=1  L L 

sin - sin - . (4.8) 

V, arises from the k = 1 and 1 = m terms in (4.2) (those terms which can be written 
in terms of the nr) ,  V, consists of the pairing (k = -m ) terms in (4.2) and V, consists of 
other correlations (terms in which k # I ,  -m and 1 # m in addition to an O(1) coniribution 
from the k = 1 = rtm terms). 

We apply the decoupling procedure of BZT [27] to V, and write 

(4.9) 

where {$k] is a set of decoupling parameters. Using (2.6) and (4.9) we then arrive at . 

'Ho = c 6 k c l c k  + 2i c f f k  @bl - A'bk) 4- VIA12 (4.10) 
k k 

where 

f f k  = 01 (2?rkl/L,. . . , ?JCkd/L) 

a@, . . . , &) = -[sine, +. . . + sinedl 

(4.11) 

(4.12) 
1 

- 4 2  
 and^ 

(4.13) 

is the gap parameter. We denote the upper bound (2.9) (which depends only on A)  by 
$(A) in this case. 

Since the reference Hamiltonian (4.10) is quadratic in the Fermi operators, it may be 
diagonalized by a Bogoliubov-Valatin transformation [27] and @(A)  is readily . .  evaluated. 
The final expression for .$(A) is 

(4.14) 

where 

2 n  
h ( ~ )  = - tmh - 

x 2  
(4.15) 

(4.16) 
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The comparison density equation (2.3) for the reference system is 
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(4.17) 

We note that @(A) depends only on [AI so we are lead to define the optimal upper 
bound 

9 < @p E ?$@(A). (4.18) 

For given t and n there exists a critical temperature T, above which @p is trivial in that 
it reduces to $@. That is, for T 2 T,, @(A) is monotonic increasing for A > 0 so that 
the minimum qP occnrs at A = D whence from (3.1) and (4.10) we have $p = &. For 
0 < T < Tc, @(A) is not monotonic for A > 0, decreasing to a minimum for some 
A > 0 before increasing so $rP is non-trivial in that $p c @m. In such cases the condition 
determining the value of A which minimizes @(A) is 

@‘(A) = 0. (4.19) 

Clearly then, T, is determined by 

@“(O) = 0 at T = Tc. (4.20) 

For the rest of this section we will restrict our attention to some special cases. 

4.1. The ha&illed band case (n = 112)  

In this case (4.17) can be solved to obtain p = 0 so (4.14) and (4.16) reduce to 

(4.21) 

(4.22) 

By daerentiating (4.21) it is easy to show that the condition (4.20) determining T, can 
be written in the form (3.13) but with 

where 

(4.23) 

(4.24) 

(4.25) 
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Using standard analysis we can rewrite (4.24) and (4.25) as one-dimensional integrals, i.e. 

and in the d =. 00 limit we have 

4.2. t = 0 case 

In this case the critical temperature is given by 

~. 

2n - 1 
4tanh-'(2n - 1) Tc = 

e d , i n  particular, kT, = 1/4 at half filling. The pairing free energy (4.18) is 

with (4.16) and (4.17) reducing to 
. .  

E(@) = dp,z + 4Az(~(0))z 

For~O < T c Ti, the condition (4.19) determining A reduces to 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

It will be noted that (4.34) is only a slightly disguised form of the familiar energy gap 

In the T = 0 limit the above reduce to , 

equation in'scs theory. 
, , 
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At half filling we have /I = 0 and (4.36) can be solved to obtain A = I ( d ) / z  where 

(4.38) 

In this case (4.35) gives 

(4.39) 

For instance, we have 

zx -0.70264 d = 1 
1 2  

(4.40) 

X -0.65915 d = m .  

5. Comparison of pairing and independent particle bounds 

5.1. The case t = 0 

From (3.19) and (4.30) we note that the non-trivial region for the Van der Waals 
approximation properly contains the non-trivial region for the pairing approximation in the 
sense that the critical temperature in the pairing approximation is strictly less than the critical 
temperature in the Van der Waals approximation for all densities. Furthermore, & c 1/IP in 
the region where the Van der Waals approximation is non-trivial, the two approximations 
being equivalent when they are both trivial. In other words when t = 0 the Van der Waals 
approximation is always superior to the pairing approximation which is hardly surprising 
when one notes that the t = 0 model is purely classical. In other words one could hardly 
expect an aaificial quantum decoupling scheme to provide a better mean-field theory than 
Van der Waals for a purely classical system. 

The difference in the two approximation schemes is highlighted in the T = 0 case 
at half filling where the pairing ground-state energy estimates (4.40) are larger than the 
Van der Waals ground-state energy estimate (3.20) which, in turn, coincides with the exact 
ground-state energy 

@ = -1 for all U at T = 0 (5.1) 

obtained for N particles on a d-dimensional hypercubic lattice when the particles form d N  
pairs of nearest-neighbour occupied sites. 

At finite temperature the Van der Waals approximation becomes exact in the limit 
d + 00 [23] but in this limit the pairing estimate $rp still exceeds h. 
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Fignre 2. The Van der Waals and n = 1/2 pairing critical temperatures as functions o f t  for the 
infinite-dimensional spinless fermion model. Also depicted is the n = 112 crossover curve t,. 
The Van der Waals approximation gives a better result for the n = 112 Helmholtz free energy 
in the dark shaded region. The pairing approximation gives a better result in the tight shaded 
region. In the unshaded region both approximations are mivial. 

5.2. The case t > 0 

As noted in the introduction there is a crossover point t = rc such that @VW < @p for 
0 < t < I, and $rP i $IVW below criticality for t > tc. 

This crossover phenomenon is illustrated in figure 2 where we compare the Van der 
Waals critical temperature with the n = 112 pairing critical temperature for the d = 00 

case. Results for d 2 3 are very similar. The crossover curve t, is also shown. 
Finally, in figures 3 and 4 we have plotted the ground-state energy estimates for the 

half-filled band for d = 1 and d = 00 respectively. In the d = 1 case we also plot the 
exact ground-state energy 

* = 1 -l -1 4/qm [ l -  

which is obtainable by using the Wigner-Jordan transformation to transform H into an 
anisotropic spin-1/2 Heisenberg Hamiltonian [28] and then applying the exact results of 
Cloizeaux and Gaudin [29]. It is interesting to note that Il.vw = @ for 0 < r 6 112 and 
*w = $rP = * when f = 1/2. Details regarding the calculation of @VW and ljlP in the 
d = 00 limit will be supplied on request. 

As mentioned in the introduction, the crossover phenomenon, which persists in the limit 
d + w, strongly suggests that we have a long way to go in finding an all encompassing 
mean-field theory for lattice fermion systems. 

0 < t < 112 

(5.2) dw t > 112 I tanh [ucos-' ( -1 /2 t ) ) ]  

tanh x w 
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-112 

Figure 3. Gmund-sate energy estimates f” the Isivial mean-field, Van der Waals and pairing 
approximations for the onedimensional spinless fermion model in then = 112 case (half-filled 
band) as functions off. Also included is the exact gmund-state energy which is recavered by 
the Van der Waals approximation for 0 6 I 4 112. 

ltivial Mean Field 

-0.8 -- 

Crossover Point (t = t.) 

-1.4 .z 

, Hopping:, t - ~ 

0.2 0.4 0.6 3/2& 1 .2 

-1/2+: 

-”’- I 
-0.6 -- 

-1/2-1/27--.---.-.-. 

-0.8 -- 

Crossover Point (t = t.) 

Figure 4. Ground-state energy estimates f” the bivial mean-field, Van der Waals and pairing 
approximations for ule infmite dimensional spinless fermion model in then = 112 ease @If- 
filled band) as functions of f .  

53.  The quasi-chemical equilibrium theory 

As mentioned in section 3, the independent particle approximation with concave envelope 
construction is equivalent to the Husimi theory which, in the present formulation of the 
variational principle, amounts to taking 
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XI -v-' x ( n k  - Pk) (am - Pm) - V-l x V 1 - t  (nt - Pk) (1 - (nl - PI))  + v p  + Ye- 
km XI 

(5.3) 

That is, the tenn V,, in (4.4) is decoupled using the parameters {&I. when optimized over 
the p x ,  the upper bound (2.9) equates to h. In the pairing approximation, on the other 
hand, V, is decoupled by the parameters {&). 

The two approximation schemes can be combined into a single formalism, the quasi- 
chemical equilibrium theory [%] which extends the independent particle ansatz to include 
pairing correlations. That is, we write 

decoupLing both V. and V,. 

approximations-pairing if $p -= 
The quasi-chemical equilibrium theory, however, reduces to the better of the two 

or Van der Waals if @VW < &,. 

6. Summary and discussion 

In this paper we have compared variational upper bounds from two plausible mean- 
field approximations-a Van der Waals (independent p"ic1e) approximation and a pairing 
approximation of the BCS *for the Helmholtz free energy of a spinless fermion model 
with attractive nearest-neighbour interactions in an attempt to assess the validity of mean- 
field theories for lattice fermion systems with attractive interactions. It was found that 
the Van der Waals approximation yields a better free energy estimate for strong couplings 
and the pairing approximation yields a better result in the regime of weak attractions with a 
crossover occurring when I ,  the strength of the hopping (relative to the interaction strength), 
passes through a critical value tc. 

The crossover phenomenon was found to exist in all dimensions d and persists in the 
Limit d -+ w where we might expect to find an exact mean-field theory. This result 
suggests that there can be no simple mean-field theory for fermion systems with attractive 
interactions in the limit d -+ 00. 

In future publications we will explore the effects of spin dependence and competing 
interactions (short-range repulsion and longer-range attraction) on the ~ h l r e  and validity of 
mean-field theories for these models. 
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Appendix. Critical temperature for the independent particle bound 

In this appendix we determine the values of t and T for which 
decreasing and concave in U). 

R J Bursill and C J Thompson 

is stable (monotonic 

We define the pressure pu derived from by 
= -a@o/av. 

A routine calculation using (3.2H3.6) yields 

Clearly is stable if and only if p o  is positive and monotonic increasing. It is easily 
established that po is positive arid monotone if U is sufficiently small or large. It follows 
that @o is stable if and only if p F  has no turning points. 

On differentiating (A.2) it is found that po has a turning point at U = I /n  if and only if 

t = 3 ( n )  (A.3) 
where 

Now F(1- n) = F(n) so turning points occur in pairs spaced evenly about n = 1/2. F is 
positive, F(0) = 0 and 3 ( n )  is monotone increasing inn  on [0, 1/21. It follows that po is 
stable if and only if f > F(l/Z). If t < 3(1/2) then po  has two turning points and so @o 
has two points of inflection and is unstable. 

We consider the function F(l/Z). From (3.3) we note that 
z =  1 when n = 1/2. 

Also from (3.6) we~have 

so combining (A.4)-(A.6) we obtain 

We next apply standard methods to convert the d-dimensional integrals in (A.7) to 
one-dimensional integrals and obtain 

where F d  is given by (3.10). The expression (3.10) is easier to evaluate in high dimensions 
than the d-dimensional integrals in (A.7). For instance, in the d = 00 case we have 

3(1/2) = Fd(2pt)  (A.@ 

XX 
F,(y) = 1- x (1 + :) e-**/4cosech - dx. 

Y O  Y 
Now Fd(0) = 0 and Fd is monotonic increasing for positive argument with limit (3.12) 

(Fl(00) = Z / X ,  F-(W) = 3/2fi). It is clear from the stationatity condition (A.3), (A.8) 
and the properties of F and Fd that is stable for all temperatures if t >, F d ( w ) .  If 
0 < t < Fd(w) then there exists a critical temperature T, determined from (3.13) such that 

is stable for T 2 T, and unstable for 0 < T < i",. In the cases where @,, is unstable 
(A.3) possesses two solutions equally spaced about half-filling so po has two turning points 
or has two inflections. 



Spinless fermions 2141 

References 

[I] Chao K A, Micnas R and Robaszkiewicz S 1979 Phys. Rev. B 20 4741 
[2] Kulik I O  and Pedan A G 1980 So". Phys.-JETF,52 742 
[3] Robaszkiewiu S ,  M i c w  Rand Chao K A 1981 Pkys. Rev. B 23 1447 
[41 Robaszkiewia S ,  Micnas R and Chao K A 1981 Phys. Rev. B 24 1579 
[5] Alewndrov A and Ranninger J 1981 Phys. Rev. B 23 1796 
[6] Alexandrov A and Ranninger I 1981 Phys. Rev. B 24 1164 
[7] Robasrkiewicz S,  Micnas R and Chao K A 1981 Phys. Rev. B 24 4018 
[8] Robaszkiewiu S, Micnas R and Chao K A 1982 Phys. Rev. B 26 3915 
[9] Pedan A G and Kulik I O  1982 SOP. 3,'Low Temp. Phys. 8 118 

[IO] Alexandrov A S 1983 Russ. J. Phys. Chem 57 167 
[ l l ]  Alexandrov A S, Rmninger I and Robaszkiewicz S 1986 Phys. Rev. B 33 4526 
[12] Robaszkiewicz S, Micnas R and Ranninger J 1987 Phys. Rev. B 36 180 
[13] Micnas R, Ranninger I. Robaszkiewicz S and Tabor S 1988 Pkys. Rev. B 37 9410 
[14] Micnas R, Ranninger I and RobasWiewicz S 1989 Phys. Rev. B 39 11 653 
[15] Micnas'R, Ranninger I and Robaszkiewicz S 1990 Rev. Mod. Phys. 62 113 
[ E ]  Stein I and Oppermann R 1991 Z Phys.6 83 333 
[17] Bursill R I and Thompson C J 1992 3. Phys. A: Math Gen. 26 769 
[18] Hubbard J 1963 Proc. R. Soc. A 276 238 
[19] Metznei W and Vollhaxdt D 1989 Phys. Rev. Lett. 62 324 
[ZO] Lieb E H and Wu F Y 1968 Phys. Rev. Lea 20 1445 
[21] Janis V and Vollhardt D 1992 Preprint 
[22] Van Dangen P G J and Vallhardt D 1990 Phys. Rev. Lett 65 1663 
[23] Thompson C I 1992 Pmg. Theor. Phys. 87 535 
[Za] Huber A 1970 Methods m d  Problems of Theoretical Physics ed J E Bowcock (Amsterdam North-Holland) 
[25] Thompson C J 1988 CIossical Equillbrium Statistical Mechanics (Oxford Oxford University Press) 
I261 Blau J M 1964 T h m p  of Superconductivity (New York Academic) 
[27] Bogoliubov N N, Zubarev D N and Tserkovnikov I A 1961 Sov. Phys.-JETP 12 88 
[28] Spronken G, Jullien Rand Avignon M 1981 Phys. Rev. B 24 5356 
I291 des Cloizeaux I and Gaudin M 1966 I Moth Phys. 7 1384 


